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The computer cost of a Poisson-Vlasov iteration procedure f m  the numerical 
h t i c . n  of a steady-state collisionless phsrnasheath problem depends on 

(a) the cature of the chosen iterative algorithm, (b j  the position of the outer 
boundaiy of the grid, and (c) the nature of the boundm, condition applied 
io siiriuiate a condition at infiiity (as in three-dimensionai probe or sateliite- 
wake problems). Two iterative algorithms, ir? conjunction with three types of 
kxnd;tr). conditions, are analyzed theoretically and applied to  the computation 
of. current-voltage characteristics of a spherical electrostatic probe. The first 

primarily on the boundary conditions and are only slightly affected by the mesh 
interval. The second algorithm is not commonly used, and its costs depend 
primarily on the mesh interval 2nd slightly on the boundary conditioiif New 
current-voltage data not previc  sly available are obtained for the spherical 
probe at large radius (141 Deb:: lengths) and large potential (100 thermal energy 
units), that is, large values for xhich computations have k e n  considered costly. 
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ITERATIVE METHODS FOR PLASMA-SHEATH CALCULATIONS- 
APPLICATION TO SPHERICAL PROBE 

L. W. Parker 
hit. Aubltni Research Associates. Inc. 

and 
E. C. S u h 3 n  

GVda'md Space Flight Center 

INTRODUCTION 

The term phnia-sheath problem denotes any boundary-value problem described by the 
Poisson and steady-state Boltzmann equations. The charge density is obtained through 
solutions of the Boltzmann equation, assuming a fined electrostatic potential distribution: 
the potentia: in turn is cbtained by a solution of  the Poisson equation assuming a fixed 
;harge density distribution. Hence. the solutions of the two equations must be self 
consistent. The solutions of the Boltzmann equation are the phase-space densities of ions 
and electrons, which in turn lead to  the respective particle densities through moment 
integrals. When the mean free path is finite. the phasespace density varies along the 
particle trajectories. When the mean free path is infinite, the Boltzmann equation becomes 
the Vlasov equation, where the phase-space density does not vary along a trajectory. Even 
in this case one must still trace the complete trajectory in order to evaluate the phase-space 
dmsity. Hence, the charge density is a complicated functional of the potential distribution; 
that is, i t  depends on the potential distribution elsewhere in space, and the Poisson- 
Soltzmann (or roisson-Vlasov) probiem may be said to  be nonlocal. 

We are concerned in the present work \*ith the solution of plasma-sheath Poisson-Vlasov 
systems. In general, one must formulate the probiem on a grid and use itesative numerical 
techniques (Poisson-Vlasov iteration) to obtain self-consistent solutions. * Physicists have 
devised iterative methods for the numerical solution of particular plasma-sheath problems, 
such as those of probes (References 1 to 7), high-velocity satellite wakes (References 8 to 
1 1 ), ion engines (Reference 1 2), and plasma diodes (References 13, 14). Among the 
papers cited, References 5 to 7 and 9 refer to a theoretical analysis of the iteration method; 
these analyses were relatively specialized t o  the specific problem. Although it is 
perhaps obvious that the various plasma-sheath problems exemplified by References 1 to 
14 are reiated, their interrelationship and the theoretical basis of the iterative methods 
presented have not been studied systematically. It is felt that such a study would be 
valuable to workers contemplating new sheath calculations, by helping to  provide a basis 

*An alternate approach is that of time-sequential wlution (direct computer hulat ion) ,  although to date this 
has proved feasible only for probbms with simple boundary mrlditions (for example, see papm by R. W. Hockney 
and others in Methods in Compufufional Physics, 9, B .  Alder, S. Fernbach, and M. Rotenberg. eds., Acadernic Press, 
N.Y.,  1970). The cpherical probe problem has been approached this way by N. Albev (Stanford University SU-IPh 
Rpt. No. 499, Dcccmber 1972) 
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for estimating computer costs. Preliminary results of the present investigation have beer, 
reported in Reference 15. 

It should be noted that mathematicians have investigated the formal theory of iterative 
processes for general elliptic boundary-value problems (References 16 to 21 ). but have not 
considered their practical applicati-ns to  the class of problems associated with plasma 
sheaths 

A u n k y c  problem arises when one boundary surface is at infinity, such as in probes 
(References 1 to 7)  and satellite wakes I References 8 to 1 1 1. The outer boundary condi- 
tion must be simulated on the computer by a necessarily artificial finite condition (for 
example, an assumed linear condition on the potential and/or its gradient on the surface 
of a large box surrounding the region of interest). This document deals primarily with such 
problems. In it are investigated, both by theoretical analysis and computer experiments, 
two iterative algorithms with respect to stability and number of iterations required. The 
two algorithms are complementary in that the f ist  one depends primarily on the outer 
boundary condition and only slightly on the mesh intenal, whereas the second one is only 
siightiy dffectea by tne outer boundary condition and depends pnmanly on the mesh 
interval. The first algorithm (Equation (2)) is the prototype of thaL which has been used 
apparently by most physicists (References I ,  3, 4, 6. 7. 9). but which has only recently 
begun to interest mathematicians (Reference 16). The second algorithm (Equation (7)) 
has received little practical but much mathematical attention (References 18. 19, 22, 23). 

To obtain an adequate quantity of empirical numerical data with a relatively small computer 
expenditure, a one-spacedimensional model problem has been chosen: a spherical probe 
in a collisionless monoenergetic plasma (References 1 ,  2, 5 ,  7, 24). Previously, efficient 
numerical methods that take maximum advantaee of svmmetrv (References 1 and 5) have 
been applied to this onedimensional probiem. In this paper the solution is obtained by 
applying a general iterative method that is insensitive to  both s-rmrnetry and the number 
of dimensions. 

FIRST ALGORITHM 

It is assumed that in an arbitrary three-dimensional problem the partial differential Poisson 
equation has been replaced by a discrete approximation, that is, by a set of difference 
equations based on a chosen grid (and including a chosen outer boundary condition). The 
term sdurion veciiir is defhcd as that vector whose components are the values of the 
potectial at the grid points. This solution vector satisfies a matrix equation of the form 

-+ + +  
L@ = F(# 1 ( 1 )  

-+ 
where L is the discsete analog of the Laplacian operator, @ is the solution vector (potential 
distribution), and F consists partly of the negative of the charge-density vector whose 
components are+the values of the charge density a t  the grid points. Izaddition, each 
component of F generally depends on more than olie component of 6. It is assumed that 
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+ --* 
a numerical procedure is available that is capable of computing F when 4 is given; that is, 
the procedure obtains soiutions ofJhe Boltzmann equation leading to  the charged-pwticle 
densities and the ve5or F. Thus, F formally can be considered as resulting from a non- 
linear operation on 4 .  * 
?he first of tht  two iterative algorithms (Equation (7)) will be discussed in detail: 

-P + 
in this algorithm. 9" represents the n-th iterate for thc \ector 4. n denotes the itrratiwi in- 
dex. and a is i! positive scalar relaxation parameter between zero and unity that couples (or 
mixes) successive iterates (More generally, a can be ;ionstationary (dependent on n), or 
a diagonal matrix (dependent on position) (Reference l).) When a is 1, there is direct 
iteration, which is the discrete analog of the well known Picard method of successive 
approximations for nonlinear two-point boundary-vJue problems (References 17, 18, 
20, 21). When CY is small, previous iterates are weighted heavily on the right-hand side of 
(2). It will be shown that the iteration progerties of (2) depend strongly on the k u n d a r y  
condition. To studcthe growth of errors, c +1! denote. an error vaLor (defined as the 
difference between Q n  and the true solution vector). Assuming that F is differentiable, 
first-order linearization analysis of (2) leads to  a matrix relation between the n-th ana 
(n+ 1 )th error vectors: 

-+ + 
cni, = Men (3) 

where the error propagator matrix M is d e f i e d  by 

M = l  - a t a L ' ' J  i4) 

In (4), L ' IS tne inverse oi  tI*; opzraror L, ana j IS the Jacobian ma'ifixzf partial 
derivatives of the compqzcnts of  F with respect to the component? of Q. -herefore, t k  
iteratiog either converges or diverges dep:nding vn whether the spectra! radius of M is 
less than or greatsr thar unity. Because Che Jacobian matrix is difficult t o  represent 
analytically, its effects are studicd in a crude manner by introducing an equivalent scalar 
parameter dF/dQ. For the situations of interest here. where a must be small, dF/& plays 
the r6l.e of a Lipschitzian constant (Chapter 9 of Reference 21 or p. 2 of Reference 23). 
This is probably justified as a zero-order approximation if the range of tht; eigenvalues of 
th: Jamhim matrix is small ccmpared with the range of the eigenvalues of L-' . (Some t~ 

posteriori support will be given in the section that discusses the second algorithm.) 

- 
* The example of a spherical ekctrostatic probe is treated m detail m the next section. 



For simplicity. a three-dimensional Dirichlttt boundzry-value problem contained withirl a 
large cube that is divided into N mesh intervals of uniform width h along each of the three 
dimensions is assumed. If the simplest centered seven-point difference scheme is used for 
L, the eigenvalues of L are given hy simple trigonometric functions (for example. by 
generalizing Reference 19 or p. 230 of Reference 2 2  to  three dunensions), and the triply- 
indexed eigenvalues of M become (Appendix A of Reference 6): 

N-1) ( j , k . I I =  1, .  . .. _, 

According to  ( 5 ) ,  in the a, X plane, all eigenvalues lie within a fan of straight lines with a 
conmoii vertex (a, A) = (0. 1). Let u denote the spectral radius of M, that is, the largest 
eigenvalue magnitude. Then, as shown in Figure 1, u is less than unity and the iteration 
converges for a restricted range of a between zero and a critical value ac. which is controlled 
by the largest eigenvalue of  L-' . The factor by which the error is redwed after n iterations 
is of the order of a", which for u close to unity is gi. cl i  approximately by the expression 
[ 1-n( 14711. For a > c y c ,  a > 1, and the iteration theoretically diverges. The spectral radius 
u(a) ke mhimized at  the optimum value aopt, which gives the maximum rate of convergence: 
the minimum number of iterations. In the range between zero and aopt, the rate of con- 
vergence increases with increasing a. In this range, the dominant eigenvalue is given by the 
largest indices in (5) and is positive; hence, the iteration is monotone (that is, the error 
does not change sign in successive iterations). For a > crop?, the dominant eigenvalue is 
given by the smallest indices in (5) and is negative; therefore, the iteration is oscillatory 
and the error changes sign in successive iterations. For a > ac, the iteration not only 
diverges but diverges iri ai oscillatory fashion. 

In problems with only one or two dimensions, the eigenvalues are given by an equation 
similar to (S), but which has only one o r  two terms in the parentheses instead of three. 
For N >> 1, which is usually the case (Appendix A of Reference 6): 

dF NZ hZ 
a c s 2  1tCK-- [ d9 s2 I-' 

where C is the reciprocal of  the number of dimensions, and K is unity for birichlet condi- 
tions. Note that ac depends on Nh rather than on h (p. 159 of Reference 21), where Nh 
is a linear dimension across the grid, say in Debye lengths. Hence, if the linear dimensions 
of the grid are large in Debye lengths, so that Nh is large, then (6) shows that the range of 
a within which the iteration converges becomes small, that is, is bounded between zero and 
ac 2, (Nh)-?. In fact, a qualitatively similar relation between convergence and grid dimen- 
sions has been observed by Lafrarnboise (Reference I ) ,  Parker (References 6 and 7),  and 
Parker and Whipple (Reference 3) on probe problems (Reference 1 5), and by Call 
(Reference 10) and Maslennikov and Sigov (Reference 9) on the satellite wake problem. 
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Figure 1. Spectral radius of iteration matrix for linearized problem. 

Also, if the charge density has a singular character, as in the spherical probe problem to be 
discussed later, dF/dqi can become large, thus forcing the reductior. of a still further. 
Finally, it is observed that as (dF/d@)(Nh)2 becomes large, the following conditions prevail: 

0 aopt tends to coincide with aC while both become small. 

0 The iteration is monotone, a d ,  for a within the convergent range, the spectral 
radius of M is controlkd by the smallest eigenvalue of L-' and is given by I-Aa 
where A = 1 + C (dF/d@)(h2/4). 

0 Because Aa << 1, the reduction of error after n iterations is approximated by 
the expression exp -Ana). 

0 For a even slightly larger than cyc, the iteration diverges rapidly. 

Incidentally, Lettenmeyer's criterion (References 17, 18, and pp. 40 and 143 of Reference 
2 1 the authors were not able to  locate Lettenmeyer's original paper) for the convergence 
of the Picard procedure in the one-dimensional continuous Dirichlet problem follows 
immediatelv from (5) with a = 1 and N >> 1 .  That is, the spectral radius is then given by 
N2 h2 IdF/dqi1/n2, which nus t  be less than unity for convergence. This is tile Lettenmeyer 
criterion, where IdF'/d@l is actually a hpschitz constant. 

To evaluate the role played by boundary conditions, a two-surface boundary-value problem 
with a Dirichlet condition on one boundary surface and afloating linear relation between 
the potential and its gradient on the oiher boundary is considered. This has been employed 
in probe problems to simulate the condition at  infinity (References 1, 3 to 7, 1 5) .  1 he 
largest eigenvalue of the reciprocal matrix L" is increased by a factor K > 1 which appears 
in (6). '+ can be shown, by analyzing the roots of the appropriate determinantal equation 
(for ex. ~ p l e ,  Equation (1.34*) of Reference 25) fur a one-dimensional problem with a 
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Dirichlet condition (4 = 0) at one end and a floating condition (@' = -k@) at the other end, 
that K = n2/z2, where z is the root of kNh = ztan(z-n/?,) lying in the range n/? < z < n. 
That is, K goes from anity to  4 as k goes from infinity (Q = 0) to zero (6' = 0).  Thus. the 
we of a floating condition tends to require smaller values of a and correspondingly more 
iterations as opposed to the Dirichlet condition. The value of dF/d@ may change in such a 
direction as to cancel this effect. It has bcen observcd in numerical experiments with the 
spherical probe (Table 1 ) that in sonie cases floating conditions converge more rapidly, 
and in other cases more slowly than fixed Dirichlet conc.tions. The value of dF/dt$ is not 
usually predictable and is considered to be m empirica'ly determined parameter. Never- 
theless, it is a useful parameter because. from problem to problem, it varies more slowly 
than a, (Table 9 ) .  

The following numerical experiinents with the spherical probe model also siic .Ad bc rele- 
vant to  three-dimensional problems. Preliminary results were reported in Reference ' 5 .  

SPHERICAL PROBE 

The problem of the spherical electrostatic probe is used as the model for computational 
experiments involving tests of three types of numerical boundary conditions simulating 
the condition at infinity, and two types of Poisson-Vlasov iteration (the first and second 
algorithms). In particular, the monoenergetic version of t k  prche calculation is used. 
which assumes that all attracted particles have the same nonvanishing total energy E,. 
Theoretical calculations of current-voltage characteristics for this model, with repelled 
particles assumed to  be described by a Boltzmann factor (that is. an exponential function 
of local potential), have been made by Bohm et  al. (Refercncc 24), Bernstein and 
Rabinowitz (Reference 2), and Laframboise (Reference 1). A similar model, but one 
using repelled as well as attracted monoenergetic particles, has been used by Guderley 
(Reference 5 )  (based on unpublished work by G. Medicus), and is the model discussed in 
this section. These monoenergetic models are physically justified on the basis that the 
problem can be solved numerically for arbitrary energy distributions (usually a Maxwellian) 
by summing uvtt rmiiocnergetic contributions (that is, by energyquadratures). Such 
calculations have been done independently by Laframboise and Parker (unpublished work) 
duplicating results obtained e d i e r  by Laframboise (Reference l ) ,  who used a special method 
for Maxwellian energy distributions. Another justification is based on computed solutions 
that show that as the probe potential becomes latge the monoenergetic attracted-particle 
current becomes identical to  the Maxwellian current. 

Figure 2 indicates tne parameters of the probe problem, with I$ denoting dimensionless 
potential in units of E,/e, where E, is the singular eneyy  (the same for both attracted and 
rcpelied particles, consisting of electrons and singly-charged ions with charge e). The unit 
of length is (E,/2nn,e2 fh, as in Reference 5 ,  that is, larger than the usual Debye length 
by a factor of f l  The range of r is between rp (dimensionless probe radius, where the 
potential is @ p )  and rb,  the dimeasionless outer-boundary radius. 
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Figure 2. Spherical collisionless monoenergetic probe model: Artificial 
boundary conditions are established to simulate boundary condition at 
in!inity (rb is moved outward until current does not change). 

The equations that may be used for a monoenergetic problem in which the ions and elec- 
trons both have the same energy are presented in condensed form as follows. (See 
References 5 ,  7, and 24 for derivations and more detailed discussions.) 

In the Poisson equation 

dZ4 2 d 4  
dr2 r dr 

F($j = 2 n ( 4 )  - 2n(@) - +--= 

where n(+) and n(@) denote dimensionless electron and ion density, respxtively. These 
densities are functionals o f t  functior g(r), defined by 

g(r, = ?( 1 4 )  

where g(r) is proportional t o  the square of the largest angular momentum or impact 
parameter which a particle can have at pumt r, and is such that there is a turning-point at 
r (Section 4.2 of Reference 24). Minima in g, namely g, and g, , correspond to  maxima 
in the effective potential and govern the density and current as seen in the following 
equations: 

0 If g(r) > 0 for rp < r Q rb, define g, (r) = Min g(r’), g, = Min g(r) = Min g, ( r )  
r’> r r r 

Then 
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0 If g(r) > 0 for rp < ro < r F rb,  then 

gm = O  

n(4) = 0 for r < ro 

- 
0 Dimensionless current density i s  

- j -4ll -- ( jo = current at zero probe potential) 
j, r i  

Finding the minima g, and gm (where g, is the lowest value of g ahead of a fixed point r, 
and gm is the minimum over all r) is an operation easily performed and ideal for computer 
calculations when the @-va!ues are d e f i e d  at a set of grid points. The special radius r,, is 
defined as the smallest radius such that g is positive for all r > ro, and is the largest radius 
for which 1 - 4 assumes negative values. In a:! cf the cases treated here, the g r )  for thc 
correct solution has a single minimum at the absorption radius rc as shown for the 
attracted particles in Figu, 3. A typical function g(r) for the repelled particles is also 
shown in Figure 3 by :hc dashed curve, where there is a radius ro such that g is negative for 
r < ro. For intermediate potential distributions occurring during iterative cycling, the 
function g(r) may become very complicated, but the above formulas take into account any 
possible variation. The formulas for monoenergetic particles are directly useful for arbi- 
trary polyenergetic distributions by means of simple quadratures. 

I I I 

I 
0 

0 

d 

r CI 

' 0  rc 'b 
/ 

' \ REPELLEDSARTICLES 

Figure 3. Special case of a nonmonotor,ic function g(r) with a 
single minimum at rc for attracted particles. For repelled 
particles, g(r) may change sign (as a t  ro in dashed curve). 
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The quantity of intcrest is the current of ions or electrons collected by the probe. Since 
rb caiinot be infinite, the question is how large must rb be in order to  simulate sufficiently 
weil the boundary condition at infinity where @ vanishes. It is fo~t:cl in practice t h i t  as rh 
increases, the current ivii: eventually level off and become independent oi rb. I t  is also 
found toat incrdasing the value of rh causes the computer cost per solution to  irlcic l\c, 
since )fixe grid pcints would be reqJired to control the truncation error, and the number 
of iterations would tend to iccreaje in accord with the malysis of the preceding section. 

%vera1 differmt types of bounday conditions may be imposed at rb.  (I Jylor (Reference 
26) has studied various types of cnnditions witt- respect tc how well they simulate the 
boufidary condition at infinity; the effect of the condition on iterations was not studied.) 

Three types of boundary ccjndition studied in the present work .ire illustrated in Figure Z ;  
(a) the zero-potential fixed condition, which has been used aa hoc for satellite wdke calcu- 
lations (References 8 to  I 1 ); ( b j  :ne inverse-sqtlare-iaw floating condition, which represents 
the proper asymptotic behavior lor the probe problem, a d  so has been used effectively 
for spherical probe calcrilations (References 1 and 5 ) .  and (c) t l i L  zero-gradist floating 
condition. The zero-potential x i t l  zero-gradient conditions represent opposite-extreme 
sonditions. General hhIeax relations, including inverse-sqtwe and exponential laws, should 
give results lying betwccn thcse extremes. Therefcre, the three conditions studied are 
probably representative of the range of interest. l 'tese conditions have different properties 
with respect to  the leveling-off xdue of rb and the number of iterations required for 
convergence; it is of interest to deiermine which condition results in the smallest net 
computer time per solution 
parzmeters for both the firs1 and second algorithms will be determilied. 

Four physical problems have teen studied: probe radius rp equal t o  10 and 100 urii 
(14.1 and 141 Debye lengths), with probe potential @p equa: to 10 and 100 units f~~ 0 c . i  

probe radius. The extreme values of probc radius and potential were chosen becausc thcy 
are physically interesting and also numerically interesting, that is, likely to be costly in 
computer time. For each problerrl. all three boundary conditic s were investigated to  find 
the smallest boundary radius rb consistent with stationary currcnt, and the smallest number 
of iterations required for the first algorithm (Equation (2)). To compsre numbers of 
iterations, the iteration was always started with :lie Laplace solution as a standard initial 
estimate. The itcration was continired until sxcessive iterates, if they converged, differed 
by less than one part iu IO5 in the current density. 

Resul's for the 12 cases are shown in Table 1.  For each case, the table gives the vclues of 
four quantities: the minimum rb for stationary current, the optimum (essentially the 
critical) value of a, the minimum number of iterations nmh ,  and the approximate time in 
seconds on an IBM 7094 computer. (Emt:rically, the time was about one ms/grid point/ 
iteration.) For all but one case the mesh inter~al  was h= 1, yielding the values shown in 
Table 1 of dimensi :nless current density j/jo, with a truncation error of thc order of a 
few tenths of one percent, as indicated by tile numbers in parentheses. For the zero- 

r -  hmfore.  the optimum values of rb and the iteration 
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potential bourldary condition and for rp = 9, = 
because of computer-time limitations. The truncation error was estimated by running 
with successively smaller values of h (down to  0.1 ). The computer time in each case is 
proportional to  the product of n and the nu:nber of giid points. (This is because a direct 
elimination method was used to  solve the tridiapnal system of Poisson difcerence equa- 
tions, so that the time per grid point is a constant for that part of the calculation.) 

The boundary conditions may be assessed with respect to  computer econom;' 2s follows. 

0 For 4, = 10 (large bu: not extremely large potential), the two floating conditions 

For 9, = 100 (extremely large potential), th: inverse-square floating condition is 

0 For rp = 10 (large but not extremely large radius), the fixed condition is 

0 For rp = 100 (extremely large radius), the floating conditions are superior 

2 .  the smallest value of h used was 2.5 

are compuable. 

superior to the zero-gradient floating condition. 

comparable or superior to both floating conditions. 

t 3  the fixed condition. 

For large probe potential or  probe radius, the fixed condition has the pecliliar property 
that, for a fixed a, as rb increases, the number of iterztions goes UF and then down again. 
For Case 10, as noted in Table 1, convergence was essentially impossible to obtain when 
rb was in a certain range of values. The floating conditions were free of such difficulties. 

Table 2 presents the empirical values of n/(Nh)2, ar(Nh)2, K, and (dF/d@) obtained firm 
(6) ,  where Nh = rh - rF. Throughout the table, the ratios of the largest to the smallest 
values of n/(Nh)2, a(Nh)*. and (dF/d@) are 9, 15, and 12, respectively. These factors are 
much smaller than the variation of a in Table 1, that is to say, by a factor of 300. For 
9 out of the 1 '? cases. dF/d# has values between about 1 and 3. In Cases 3.6, and IO. 
dF/d4 has values of about 5 ,  7, and 16, respectively. The occurrence oi t'nese iarger 
values is probably connected with the existence of a singularity in the derivative of the 
density as a function of potential (where a radicand vanishes). 

If the error reduction by iteraticin is described by the expression exp (-Bna), the em.*irical 
coefficient B is found sometimes t o  be less thar. unity, I I I  contradiction to the linearization 
theory. This is probably due to the closeness of the spectral radius u t o  unity, so that 1-0 
is sensitive to --:all perturbations in the theory. For example, the neglect in the spead  of 
the sigenvalues of the Jacobian matrix J could lead to  such 3 pertur5ation. This affects 
the number of iterations, However, the critical value of a is much less affected. Indeed, 
consistent with thc theory, ac is found to be a decreasing function of Nh, and is insensi- 
tive to  h for a given Nh. 

Aside from the properties of the iteration process, Table 1 shows that the minimum value 
of rb is larger for the fixed condition than for the two floating conditions, but is independ- 
ent of which floating condition i used. This is cotislstent with References 1 and 26. 
Moreover, the minimum i,, is found to be independent of h (not indicated in Table 1). 
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.As a result of the shove hdings .  the following procedure is r r c x ~ ~ i i ~ r i r ~ i l i r d  in oidci :r: sx 
computer tin;: when solving similar problems for any chosen boundary condition: First. 
minimum values of rb and critical values of or bhoald be found while using large values of  
h. that is, few grid points. Then h can subsequent!y be reduced in order t o  diminish 
truncation cror without the necessity of further changes in rh and or. I t  is not yet clear 
how to choose the proper boundary conditior. to  be used for an arbitrary problem. 

An interesting but unjustified assertion has been made by Maslennikov and Sigov 
(Reference 9) in connection with their use of (2) to iterdte thc high-velocity satellite 
wake problem. To ensure stability. the volume of the _gid (the region cf interest) must be 
smaller than a number proportional to the ion energy. The present analysis defined Nh 
to be an appropriate linear dimension of the grid in Debye lengths. and found that (Nh)' 
must be less than a certain constant fur a fmed a. if X represents the appmpriare h e a r  
dimension of the grid. and if the effective Debye length is based on the ion directed 
kinetic energy E, (rather than on the electron thermal energy kl}. then (Nh)' is propor- 
tional to  X2/E,. Hence. the criterion is tha? a cross-sectional area (X' rather than ;he 
voiume X3 as stated in Reference 9) of the Bid must be smaller than a number propor- 
tional to  E,: The characteristic energy is the !arger of E, ana LT. Thus. the criterion for 
stahilitv requires that the dimension X be smaller than a certain number o f  effective . -  

Debye lengths A*. where A *  is defined b y ~ E o / 4 x ~ , e 2  when E, >> kT (Reference 9). 
and hydkT/4xn,e2 when E, 5 kT. 

SECOND ALGORITHM 

Tkis section discusses the second algorithm: 

where p is a scalar relaxation panmeter. This extension of the Richardson method (p. 226 
or' Kererence 1, p. 9U or Keterence 3)  has beer! studied h mnnectior! \./it!? m!!e!y 
nonlinear elhptic equations (References 18 and 19). It wiil be seen thar the iteration 
properties of (7) are essentiaiiy independent of the boundary condition. Li c%iiti& io (21. 
This is because the eigenvalues of L, which contain the boundary condition mfcrmation. 
have a minor effect on the spectral radius of the iteration matrix M that relates successive 
error vectors. By applying a lineaetation process to (7), similar to that applied to  (2), 

Y = Ip-L)-' (PJ) (8) 

where J is the Jacobian derivative matrix as in (4). (if the scalar parmeter p ili (7) were 
replaced by the matrix J, the lin .ar iteration matrix M would vanish, resulting in a Newto- 
nian-type process. that is, a disct3te analog of quasi-linearization (Refercnce 20).) It is clear 
that the eigenvalues of J play a ,rucial role in determining the eigenvalues of M. Assuming 
the effect of L to be that of a perturbation, then to lowest order the eigenvalues of M are 
approximated by 

!3 



where A, is an eigenvalue of the Jacobian matrix J ,  and A, is an eigenvalue of the operator 
L. 

It is assumed that the eigenvalues of J are all positive* and lie in the range (A ,  < A, < A, ). 

Also, under the conditions leading to (S), all of the A, are negative. Hence. for fixed p and 
A,, the largest value of 1x1 occurs for tne minimum value of -A,. which is given by 
A, = w2/(KN2 h2 ) when N >> 1. Thus, if p is large compared with A,, the spectral radius 
of M, iramely u, becomes independent of the eigenvalues of L and is approximated by 

A2 + A 1  for p > ~  
c 

Note that, considered 3s a function of I/p, o( I /p)  is qualitatively similar t o  u(a) plotted 
in Figure 1.  The minimum va!ue of u. corresponding t o  the minimum number of 
iterations is 

which occurs when p is equal to the optimum value 

When p exceeds the critical value p, the spectral radius u exceeds unity. and the iter- .m 
A;..n-"L.c ,.,l.beve 
Y.. .,.c'y. .. ..-. - 

(14) 
- A 2  

P, - - 
2 

Therefore, if the eigenvalues of J are approximately equal (that is, A, - A, ), then 
umin << 1 and popt - 2pc - A,. However, if A ,  << A, 

h2 
p , - p , = ,  (15) 

L 

Moreover, if u is close t o  unity, then according to ( 1  1 )  the error after n iterations is 
reduced approximately by the expression exp (-nX1 / P I .  

*Jus! '?able on the basis of analytic forms approximating the space-charge density (Appendix A of Reference 6). 
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Tht.is, empirical evaluation of pop, and p, from iteration experiments with our rnodcl 
problem will give information regarding the eigenvalues of the matrix J f9r the roblem. 
A check can also b: made on the assumptions leading to  ( 5 )  and (9), and a direct 
cumparison of the two algorithms can be made. Presented in Table 3 are the results of 
computations using the second algorithm for the same 12  problems presented in Table 1 
for the first algorithm. The minimum values of rb are the same as in Table 1 and are not 
shown in Table 3. For each case. the table presents five quantities: the optimum value 
pop*. the range of p containing the critical value p,. the minimum number n of iterations. 
the approximate value of A,, and the value of A, = I /h ,  (the dominant eigenvalue of -L-' ). 

It is evident from Table 3 that pppt, p,, and the minimum number of iterations are inde- 
pendent of the boundary condibon. Actually, for a given rp and @ p ,  they depend only on 
Liic: iiitsii iiricrvdi h. f h c e ,  fGi 2 

conditions require equal numbers of grid points hut fewer points than the fixed condition: 
therefore, the floating conditions are equally economical and are more economical than 
the fixed condition. 

A L .  truncation CmOi ,  giibciiied bj -  ii, tiie two f~at i i l g ,  

In all cases, the fact that the fractional difference between pop, and p, is very small is 
evidence of the validity of (15) and of the inequality A, << A, (assuming (9) to  ( 1  1 ) are 
valid). Hence, from ( 15) and the empirical values of popt, A, may be estimated. Now 
pDPt >>A,. where A, = ] /A4 ,  in all cases. Therefore, the assumption leading to  (9) t o  
( 1  1 ) is justified, that is, that the effect of L is that of a perturbation. Also. the fact that 
A, is in all cases larger than A, supports the assumption that the range of the eigenvalues 
c F  J is small compared with the range of the eigenvalues of L' These considerations 
apply to  h = 1. However, as noted in the footnotes of Table 3, when h was set equal to  the 
small value 0.1 instead of to 1, it was found in Case 1 that popt was reduced to  0.02, a 
considerable reduction. Because pop, << h, in this case, the effect of L can no  longer be 
a small perturbation, so that (9) to  ( 1  1 )  are probably invalid. However, the number of  
iterations was 47, which is apprcjximately the same as for h = 1, which was 52. 

C- ,+parison of the numbers of iterations in Table 3 with the corresponding numbers in 
able 1 shows that for the given values of h, the second aigorithm is more economical 

than the first. In some cases, the number of iterations is even reduced by an order of 
magnitude (for example, Case 10). However, the second algorithm is so sensitive to the 
value of h that the situation c u I  be significantly reversed. For example, for Cases 10 to ! 
in Table 3, no  satisfactory convergence was obtainable for h = 2.5; that is, the behavior 
was peciiliar in  that for p = 90 the current appeared to convtrye after SO00 t o  6000 itera- 
ti m, but to a value 4 percent lower than that resulting from the first algorithm. For p on  
eit, 5.- side of 90, however, the iteration number was greater than 25 000, the maximum 
dliowed. Nevertheless, in all cases shown in Tables 1 and 3, the iteration was assumed to 
have converged properly because both algorithms converged to the same value in every case. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt. Maryland February 19,1973 
188-4&52-05-51 
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